We would like to print a list in STAFDUST of the NCA members that belong to other astronomical groups such as the AAVSA, ALPO, the AMS and others. If you belong to one of these groups, please give the information to the secretary, Mrs. Hora Keel.

NEXT MONTH

Our speaker for March will be Dr. David Musto, who will describe the beginnings of the U.S. Naval Observatory.

Astronomy compels the soul to look upwards
And leads us from this world to another.

NO MD-DC JUNIOR KEETING in TEBRUARY

GRAVITY WAVES

February's speaker is Dr. Joseph Weber, from the Department of Physics and Astronomy, University of Maryland. Dr. Weber's area of investigation recently has been gravity waves; he is in charge of experiments which promise possible detection of this elusive form of radiation.

Relativity predicts that an oscillating mass will radiate energy in the form of gravity waves, much as an alternating current will produce electromagnetic radiation. However, this radiation is on the order of watts for a terrestrial source*, making detection virtually impossible. Even a spectroscopic binary star syster. does not radiate lo tent energy to be detected by means we now have au our disposal. Nature may provide a much more intense source of gravity waves; this might possibly occur when a star undergoes gravitational collapse. Con servation of angular momentum in the system would dictate faster and faster rotation as the radius shrinks, until the velocity 58 light is approached. Gravitational radiation energy of perhaps 10 watts would be attained. This could very well be detected with equipment now available to the physicist.

Dr. Weber's apparatus, which he will describe in his talk, has detected "events" which can apparently be explained only by brief purses of gravity radiation, all though it is still much too cary talsaydefrif. finitely whether this is the case. certainly it appeases jas though he and his staff are onto something big, possibly a development in physics fully as significant as the experiments of Hertz frinthedetection off 08 electromagnetic waves emitted by an alternating

FEBRUARY 3 6:00 pam. Dinner with the speaker, sasin's (1.4th \& Pa.) Call Jerry Hudson, $948-2809$ for reservations
7:30 pom. meeting of the officers and board of trustees. (Because of bad weather, we were unable to meet a quorum last month) Dept. of Commerce Auditorium.
8:15 p.m. GRAVITY WAVES, Dr. Joseph Weber, Univ. of Maryland. Dept. of Commerce Auditorium.

10 8:15 p.m. Discussion Group. (upstairs) Commerce Bldg., Rm. 2062 Topic will be an amateur's observatory--that of our treasurer, Mr. Robert N. Bolster. Slides will be shown which were taken during various phases of construction, and mention will be made of certain Fairfax County zoning regulations pertinent to observatory building.
6,13,20,27 TEIESCOPE MAKING CLASS at the Board of Education's Material Center in Bladensburg with Ted Noble.

2,9,16,23 TELESCOPE MAKING CLASS at the Chevy Chase Community Center at 7:30 P.M. with Hoy Walls
3 GENERAL MEETING OF JUNIOR DIVISION at 7:30 P.M. in the Dept. of Commerce auditorium. All juniors are urged to attend. January Junior Meeting was cancelled due to snow.
JUNIOR DIVISION ASTRONOMY CLASS Sunday afternoon at 3 P.M. in Planetarium of Montgomery Junior College. Call 933-0823 Mark Goldberg) for the date

* This was calculated by Einstein for a rotating rod l-meter long, at an angular velocity as fast as the material would allow.

Dr. Weber received his Ph.D. in physics from the Cathollc Iniversity pe merica in 1951. He has been the recipient of two Guggenheim fellowship under which he has done work in quantum electronsics and general relations Before coming to the University of Maryland, he was with the Institute EOF dyanced Studies

Those who may want to do some more reading on the subject will find an excellent, non-technical article in the October 1967 issue of Scientific Research (pp. 41-43).

MIDDLE EAST REGIONAL CONVENTION JUNE 14,15 , and 16 , Pittsburgh, Pa .
The convention will be held at the Quality Courts Motel East (near the Westinghouse Rridge). It is on Route 30 off the Pa. Turnpike at the Irwin interchange. The motel is giving special rates. Friday evening will be a bus trip to the Alleghery observatory. The Banquet will be Saturday evening with Dr. Wagman of the Allegheny Observatory being the speaker. Sunday will be a trip to large private Observatory in the pittsburgh area. plan now to attend this convention. In case you will consider presenting a paper, please write to Mr. George G. Lingbloom, 1606 Burchfield road, Allison Park, Pa. 15101.

NEW MEMBERS

Membership Applications Received at the January Meeting

Joint Membership

Darrel J. Freund and Darrel Jr
4703 Teak Ct
Camp Springs, Md. 20031

OTE FROM EDITOR

All of us associated with the publication of Stardust regret that it is often received late and sincerely hope that this has not caused you to miss a lecture that you particularly wanted to hear. The publication Stardust requires the efforts of many people to collect the information necessary to write even just the calendar! It should be remembered that these people, including the editor, and the photographer are all voluntary and can not be expected to take time away from their regular jobs to work on Stardust. If you have never worked on a project like this you may not elieve the number of things small and large that can go wrong-a last minute change in speaker, the speaker forgets to send his resume, someone is sick, someone is called out of town. When an emergency arises, there is one prepared to take over and fill the gap. Several times in the last two years requests have been made in Stardust and at the regular meetings for help. No one has volunteered! Stardust belongs to the membership and your help is needed to make it the type of publication you want.

ROM HERE AND THERE

The Astronomical Society of Harrisburg will hold their annual dinner Mebruary 15, Gallileo's birthday. Dr. Peter Van De Kamp will be the speaker

How about the NCA having an annual dinner? Guess it would be our 31 st vear. Seems like it has been 10 or 12 years since we have had a banquet. Someone get the ball rolling.

We also note in the "STARDUST" of the Harrisburg group that their Jünior roup is selling the Messier OBSERVE Manual for $\$ 1.50$. Copies are still available from Bob Wright for $\$ 1.00$.

- Contld.p.
 TANOARO STALION AT LAT 38.920 LONG 77.06

page 6

OCCULTATION PREDICTICNS

These predictions are provided by David W. Dumber(Taie Chsorvatory) and Thomas C. Van Flandern (U.S. Naval observatory). The following explanations apply to column headings:

TIME (UF): Note that events are generailly, but not always, in strict chronological order.
ACC SEC: Approximate accuracy of predicted time, in seconds.
Y: Value code, indicating expected usefulness of the observation O: Observability code, indicating expected difficulty/ease. 9= easiest. Z.C.: Zodiacal Catalog number. Audouble star (Aitken's catalog). B or C other double star. Du double and variable star.
S.A.O. NMMBER: Star's number in Smithsonian Astrophysical Obs. catalog PH: Phenomenon. $G=$ graze. MImiss. It is possible for extremely shallow solid occultations to be listed as grazes, and vice-versa. ELG: Elongation 1.e., distance of Moon from Sun, in degrees. PA Dic position angle of (not from the north cisp). CUSP ANGI. Distance of event meas onto dark (not from the north cusp). CUSP AlGL: Dlstance of event neas. onto dark limb from N or S cusp. VA DEG: Vertex angle, meas. counterclockwiae from uppermost (toward the zenith) point on Moon's disc (for use with altm azimuth instruments). SUN ALT: Given only when critical. AA DEG: Axis angle, meas. eastward from Moon's north pole. MIN MAG: Magnitude at min. brightness of var. star (for which MAG=max.) GRAZING OCCULTATION NEARBI-abe: This extra line is printed out if the star is within 0.02 radius (approx. 20 miles) of the mean limb at central occultation or closest approach. (Iths line refors to prev. line).

JANUARY LECTURE - ROCKETS, ASTRONOMY, AND AERONOMY
$x-r a y$ stars are the hottest topic in astronomy today according to our January speaker-Mr. Charles Johnson-w head of the Aeronoray Section of the Naval Research Laboratory. The most famous X-ray source is the Crab Nebula (Taurus $X R-1$) which an Aerobee rocket flight proved several years ago is not a point source of X-rays. This flight occurred during an occultation of the nebula by the moon, and the X-ray emission did not cut off shaxply but decreased gradually. The strongest X-ray source is Scorpius XR-1. Most X-ray sources exist along the galactic equator with the greatest concentration toward Sagittarius. Few are extra-galactic; a notable example of one of these is quasar 3c-273. One variable X-ray sta: has been discovered; i.e., Cygnus $\mathrm{XR}-1$, whose strength decreased significantly between June 1964 and the following April.

Aeronomy is a new field of science barely a decade old which deals with that part of the upper atmospheres of planets where ionization an disassociation are jmportant. Here the density of air is millions of times less than at the surface.

The German V2 rockets were the first to observe and record the ultraviolet spectrum of the sun. only by rocket or satellite can the sun's Lyman alpha line of hydrogen (1216 A.) be seen. After the V2's had been used up, N. R. L. Aerobee rockets continued upper atmosphere research by carrying a wide variety of instruments into near space up to 250 kilometers. Various bands of ul.traviolet can be selected and measured by detectors having different combinations of windows and gases; for example, itric oxide exposed to uv through a Iithium fluoride window. The window sets a lower limit on the detected radiation wavelength and the gas, an upper limit. A Schmidt camera with a calcium iluoride corrector plate and image intensifier electronics has been used on board Eerobees for studying hot 0 and B type stars in uitraviolet light down to 1250 A. These optics are blind to Iyman alpha radiation which is strong in air glow and would fog uv star fields.

The Benneti R F mass spectrometer has been successfully used on Aerobees for measuring ion concentrations in our upper atmosphere. This instrument has revealed many interesting facts about the ionosphere such as the presence of a great deal of the nitrous oxide ions in our upper atmosphere. (Perhaps there is a Martian Dr. Kiess who thinks that life is impossible n the earth because of the presence of this poisonous compound of nitroof in our anosphere.) the Marina V lyy-by of Venus studied the ionosphere finis planet. Apparently the ionosphere of venus is high at night but low uring daytime. Mr. Johns on explained that since Venus has no appreciable magnetic field, the solar wind is strong enough to blow the ionosphere off the planet or to the night side

- Leith Holloway

FROM HERE AND THERE...Cont'd. from p. 2
From "IHE GUIDE STAR" of the AAA of Pittsburg: How are we going to teach logic in a world where everybody talks about the sun setting, when it is really the horizon rising?

**

"STAR LITE" is the name of the newsletter sent out by the Peoria Astronomical Society of Peoria, Ill.
"STAR Newsletter" is the title of the publication of the Society of Telescopy, Astronomy and Radio (STAR) of Eatontown, N.J., a society belong ing to the Middle East Region of the Astronomical League.-Joncluded on p.

The January-February issue of Review of Popular Astroncmy carries an article by Jerry Hudson. It is the same article that appeared in a recent STAR DUST on A Simple Clock Drive Desien.

Before one has gone once around the barrel, the HCF has worn into contact with the optical surface.
HGF is useful too when making gross zonal corrections, such as removing a severe case of turned-down edge, or correcting a hyperbola. Final smoothing and blende ing can only be done on a pitch lap, however.
This suggests one might wish to use another piece of glass (praferably one with approximately the right curvature) for the pitch lap, keeping the original tood free for HCF working. one can proceed a bit more confidentiy on his pitch lap, knowing he has an intermediate alternative to the one dreaded by a.l1 mirror-man returning to find grinding.

She mire of

2.c.- Zodiacel cattrote he appearance (disappearance) of the double star my", tulke the moan time of he brighter component of the pots

Hercury.....	4001	urams.a........ 4007
จenus........	4002	soptune........ 4009
Mars.........	4004	ceros........... 5001
'Jupiter.....	4005	Pallas.......... 5002
Saturn.......	4006	Jun0............ 5003

Vesta.........5004
HBNM Phonomonon Dm Disappearance Fw Reappearance *-Near crase
.A. DEgrposition ingle (dogrees), measured eastward from the northernmost point on Po. C. B. Busapoaition angle of the contar of tha Bright Limb. (asoe convan

Man portable tolescopes lack a ready means for lining up the polar Many portable tolescopes lack a ready means for lining up the polar
xis with the earth's axis, thereby assuring the observer of hours of tracking by the clock drive, and making possible the taking of long exo posures. Either the problem is ignored, whence observing becomes less pleasant and photographs unsatisfactory; or the observer spends half an hour tediously lining up the mounting, using his finder for sighting.
A glance of Fig. c shows why even careful guiding is not able to eliminate trailing of star images if the axis is misaligned. The film and camera remain in the same alighment north-south with respect to the alse pole, F , while the direction on the film toward true north, P, changes during the exposure. Of course, the guide star remains fixed on the film, while all other parts of the field rotate about that point. The angle through which the film rotates is $\theta_{7}-\theta_{2}$. Under the worst possible conditions, for a pole misalignment $\cdot E$, a co-declination of the guide star D (90° - decl.), and an exposure of length T .

$$
\left(\theta_{1}-\theta_{2}\right)_{\max } \approx \frac{E W I}{D}
$$

W is the angular rate of the earth's rotation, $15^{\circ} / \mathrm{hr}$. Thus, if our polar axis is misaligned 2°, our guide star 30° from the pole, and which would easily be seen on any photograph. Cameras of short focal nich would eatisme to this anfoct-mil and offiset of the guide telescope.

The polaris telescope shown in Fig, a is patterned after one built by Mr. Robert N. Bolster, and could be adapted to any standard mounting A means for adjusting the alignment of the telescope is needed, such as the ring mounts shown. The reticle is a standard crossmline ruled on lass (obtainable from Edmund Scientific Co.). A ring of the correct angular radius (54' for 1968.0, 9 per ann.) is scribed onto stiff, reansparent pla lestice, and prentered on the crossmine re doing the final ono. inside an eyepiece. The threaded retaining ring that was intended for the field lens can be used; machine washers can be inserted to obtain the ight focus.
In use, the mounting is lined up approximately, and the main telescope pointed to any of the following bright stars:
I. (0^{h}) \propto Androvedae (N.E. corner of the Great Squara)
II. (6^{h}) \propto orionis (Betelgeuse)
III. (12 ${ }^{h}$) γ Ursae Majoris (in the Big Dipper)
IV. (18^{h}) γ Draconis (in the Dragon's head)

Final adjustment is made by lining up the Polaris telescope with Polaris on the appropriate hair and the scribed circle, as show in Fig. b. The view is as one would look directily into the eyepiece in Fig. a, and it assumes a simple star diagonal was used in the Polaris telescope.

Adjusting the rig consists of bringing the intersection of the cross hairs into coincidence with the rotation of the mounting and turning the reticle until hair I coincides with an angle $30^{\circ}\left(2^{h}\right)$ east of tie meridian. The main telescope should be clamped to point along the meridian.
A little time in the shop making a polaris telescope will be repaid during the first few nights of observing. Ijning up should not take over five minutos, and accuracy can be heild consistentily to within $1 / 10$ degree.

