

January 1968

ROCKBTS, ASTRONOMY, AND AERONOMY

Mr. Charles Y. Johnson, who heads the Astronoay secsion of the Hulbert Center for Space Research, Naval Research Laboratory, is guest speaker for our January meeting. Mr. Johnson has been with N.R.L. since 1942, when he was stationed there as a Naval officer. Following the war, he transferred to a scientific position in a civilian capacity. Mr. Johnson is a native of Washington, D. C. and was educated at the Iniversity of Virginia, where he received a B.S.E.E. degree. His interests tumed skyward in 1953, when he began doing work in astronomy. His primary interest has been the ion composition of the earth's ionosphere, which is being stwdied primarily with rocket-borne instrumentation. An abstract of his taik follows:

Visible and radio windows in the earth's atmosphere permit astronomical measurements to be made in two narrow bands of the electromagnetic spectrum. To see ultraviolet and X-radiation from the san and stars, inotruments must be taken above the absorbing atmosphere by sounding rockets and artificial satellites. Some of the new rocket techniques for ultraviolet and X-ray astronomy and their results will be described.

When ultraviolet and X-radiation, primarily from the sun, interact with the tenuous upper atmosphere, dissociation and ionication occur. The discipline which studies these phenomena is called aeronomy. The basic processes which produce, sustain, and destroy the ionosphere are known. The lower ionosphere is different in both composition and structure from the atmosphere in which it is immersed, and from which it was produced. Ionic processes are responsible for this condition in our planetary atmos. phere.

600 CALKNDRR
 to muke reservations.
 8:15 P.M. ROCKETS, ASTRCNOKI, AMD AKROHOWI, a taik by Mr. Charies Johnson, N.R.L. Dept. of comenerce auditorium. To be followed by the roguiar businoss moeting.
6 GEMKRAL MEETING or JUMTOR DIVISION, 7:15 P.M. in Dept. of Commorce auditoriven. All Jumiors are urged to attond.
23 MD-DC JONTORS MKBTING at 2 PM at the Chevy Chase Library, nounced.
13 DISCUSSION GROUP. Dept. of Comenerce. (upatairs) Rm. 2062. Topic will bo stollafano, the annual convention of amateu telescope makers held in Springfiold, Ft. Slides of past convantions will bo ahow, and amateur toloscopes which were prove a stimuineting evening for those interestad in tolescope making.
山 Yost probable dato for second elass in Junior piv. As tronony
Courge. Time: 3 PM in planotartum of Montginery jr. Coi. Call
 OBSBRTINV IT THE YIVE DNGH on the gromds of the U.S.Naval Coserv with Larry wisto.
5,19 with Grady whitney.
 7:30-10300 \quad. M.
5,12,19,26
2,9,16,23,30

DECEMEER LECTURE - PLANETAFI DISCOVER
The English astronomer William Herschel discovered the planet Jranus on March 13, 1781 using a 6minch reflector. Our December speaker, Mr. Demnis Rawlins, of the College of Notre Dame in Baltimore, reminded us of this great event in astronomical history and went on to relate other fascinating facts in the annale of planetary discovery.

Uranus had been observed and its position recorded no less than 23 times over a period of nearly a century prior to Herschel's discovery. Herschel recognized tranus as a non-stellar celestial body by using up to 1,000 power and observing its pale greenish disk. Actually at first he thought he had discovered a comet. The first to sight Uranus was John Flamsteed, the first Astronomer Royal of Britain, who recorded the planet as a star in Taurus in Decenter 1690 . Flamsteed was engaged in a 30 -year program of cataloging the positions of 3,000 nakedmeye stars. He observed and charted Uranus several other times later in Leo and Virgo.

Bode's Law predicted a planet with a mean distance from the sun between that of Mars and Jupiter, namely, 2.8 astronomical units. Since Uranus had a mean distance in satisfactory agreement with Bodets Law extended, credibility in this law increased after this planetis discovery, and astronomers searched for a planet beyond Mars with renewed enthusiasm.
on the first night of the nineteenth century the Sicilian astronomer, piazzi, discovered the minor planet Ceres and observed it for two months early in 1801 until it faded in the western twilight. There was danger that ceres would be lost because of the short period of observation, but the German mathematician Gauss developed the powerfur mleast squares" method of fitting data and predicted the future position of ceres to within a quarter of a degree nearly one year in advance thus making its rediscovery possible.

Olbers diacovered the second minor planet Pallas in March 1802 and the fourth; Vesta; in 1807. Harding, discovered the thind, Juno, in 1804 . .NNo. more asteroids were discovered until 1845 when Astraea was sighted. Thereafter discovery came fast and by 1868 the known minor planets numbered one hundred. By this date these bodies had become somenhat of a nuisance since astronomers had to track them all as modern space scientists now have to keep track of space junk circling the earth

- Ieith Holloway

FROM HERE \& THERE...
The November-December issue of the Review of Popular Astronony carries an article on the Sterling Anderson Observatory:

Mrs. Noble and her mother attended the loth Anniversary dinner of the ehigh Valley Astronomical Society in Allentown. Their society is in an expansion program having recently been donated a completed observatory and acreage on the top of a hill a few miles west of Allentown. Also in attendance were several from the Naval Observatory's Grazing Occultation group.

The Harrisburg group is working on an astronomical Park several miles south of Harristrurg. The building is nearly complete and they expect their mirror shortly fror having it aluminized. Mr. Walls of the NCA finished the mimror for ther. Their publication is called STARDUST.

A Bulletin from the Midland Empire Astronomy Club of St. Joseph, Mo. tells of their recent participation in a successful Grazing occultation in Kansas. Several members of the Naval Observatory team drove to Missourd for this event. Mr. Russ Maag, President of the grow attended the National Convention in washington this pat summer and was appointed to chair a com convention in vashington this past sumer and was appointed to chair a com1970 eclipse of the sun in Florida in 1970 .

FROM HRRE \& THRRE - Contld. from p. 2
The DAS builetin has been carrying a series of articles on their trip to South America to see the eclipse last year. (DAS, Detroit Astronomical Society.)

Bob Wright attended the Fall meeting of the AAVSO held in Springfield, Mass.
The Messenger from the Sky is the publication of the URSA MANOR ASTRONOMICAI SOCTETY Society.

Bob Bolster had a hearing with the City Fathers and they have given their blessing to his new Observatory. We hope it is clear skies from here on. NEXP MONTH.....We will be fortunate in having as a guest speaker for rebruary Dr. Joseph Weber from the University of Maryland, who will describe experiments now in progress for detection of gravity waves.

NEW MEJMBERS......
Applications Received at the December Keeting

PEGULAR

Major Jinmy D. Akers
14009 Adkins Road
Laurel, Maryland 20810

JUNIOR

Peter Fiekowsky
$5425 \cdot 39$ th St. . N.W.
Washington, D. C. 20015
Robert Hicks
3200 24th Road S. \#1126
Arlington, Virginja 22206
John Spiegel
21-61 Evans Cormer Road
Falls Church, Virginia

PCLISHERS....

Two ideas are presented here for making polishing laps which are certainly not new, but perhaps have not come to the attention of our local mirror makers. Anyone who has read Everest (Amateur Telescope Making- 300 k II) and has attempted to construct one of his hard pitch laps has no doubt found that initially attaining contact can be a bit of a struggle, especially with a deeply curved surface. A really hard lap seemingly refuses to coldmpress, although it will flow enough to keep contact once it has been correctly formed. one way to insure contact from the very start is to pour the pitch onto the face of the mirror. To keep the pitch from sticking, the mirror is first smeared with glycerin and then covered with a sheet of waxed paper. A paper ring about $3 / 0$ of an inch high, and just larger than the ikirror, is centered on the mirror to keep the melted pitch from running ofl. ine tool is treated with turpentine, for the opposite effect, and is pressed com onto the melted pitch immediately after pouring. As soon as the pitch hardens, the mirror is slid off. the waxed paper, and the waxed paper peeled fron the face of the lap. There may be a few shallow wrinkles and bubbles in the lap. surface; these do no harm. The irregular edge of the lap is then chippec away and channels formed with a sharp, single-edged razor blade.

The job of channeling, though messy, is not difficult so long as a sharp, clean blade is used. . The blade is firmly pushed. into the pitch at about a 60° angle (see diagram) to the surface, and is slanted away from the chip to be dug out. By working on opposite sides of the channe with ever-deepening cuts, one can completely avoid the chips in facets so characteristic of hard laps. The job may require two or three new blades, since wearing is rapid.

HCF, " which is telescope-nut language for honeycomb foundation used by bee keepers, finds its use in one kind of polisher. It has met with both high praise, because of its ease in use and freedom fron contact problems, and going further, perhaps we should stop and enumerate sore of these drawiocks.

The hexagonal pattern in the sheet of HCF leaves severe micro-ripple in he glass (see Texereau: How to Make a Telescope). Because it is an ex till, the rapid action causes a "dogmbiscuit" (over and ajove the fine microm ripple) or lemon-peel effect easily seen with the Foucault test. Needless to say, it would be foolish to thry finishing and parabolizing a mirror with HCF.

However, there are uses to which HCF can safely be put. I have seen a ten inch mirror which was completely polished to the edge in three hours with erium oxide on an HCF lap. The figure was not pretty, but certainly not out control. The edge was in fairly good shape; indeed, better than most pitch laps would leave it after a spell of vigorous pollshing. inis suggests a possible way to shorten that dreary stretch between fine grinding and figuring.

Making an HCF lap is very simple. The tool is heated تitin hot tap water until it is uncomfortable to the touch. After it is dried, a plug of beeswax is rubbed on its surface, and then a sheet of HCF placed on top of $1 t$. The is made to adhere by poking it in several, evenly-spaced places with the forefinger. As soon as the tool cools a bit, rouge or cerium oxide is applied in a thick cream, and polishing begins.

